Virus shapes and buckling transitions in spherical shells.
نویسندگان
چکیده
We show that the icosahedral packings of protein capsomeres proposed by Caspar and Klug for spherical viruses become unstable to faceting for sufficiently large virus size, in analogy with the buckling instability of disclinations in two-dimensional crystals. Our model, based on the nonlinear physics of thin elastic shells, produces excellent one-parameter fits in real space to the full three-dimensional shape of large spherical viruses. The faceted shape depends only on the dimensionless Foppl-von Kármán number gamma=YR(2)/kappa, where Y is the two-dimensional Young's modulus of the protein shell, kappa is its bending rigidity, and R is the mean virus radius. The shape can be parametrized more quantitatively in terms of a spherical harmonic expansion. We also investigate elastic shell theory for extremely large gamma, 10(3)<gamma<10(8), and find results applicable to icosahedral shapes of large vesicles studied with freeze fracture and electron microscopy.
منابع مشابه
Thermomechanical Buckling of Simply Supported Shallow FGM Spherical Shells with Temperature dependent Material
The thermomechanical buckling of simply supported thin shallow spherical shells made of functionally graded material is presented in this paper. A metal-ceramic functionally graded shell with a power law distribution for volume fraction is considered, where its properties vary gradually through the shell thickness direction from pure metal on the inner surface to pure ceramic on the outer surfa...
متن کاملBuckling Analysis of Functionally Graded Shallow Spherical Shells Under External Hydrostatic Pressure
The aim of this paper is to determine the critical buckling load for simply supported thin shallow spherical shells made of functionally graded material (FGM) subjected to uniform external pressure. A metal-ceramic functionally graded (FG) shell with a power law distribution for volume fraction is considered, where its properties vary gradually through the shell thickness direction from pure me...
متن کاملInfluence of the Elastic Foundation on the Free Vibration and Buckling of Thin-Walled Piezoelectric-Based FGM Cylindrical Shells Under Combined Loadings
In this paper, the influence of the elastic foundation on the free vibration and buckling of thin-walled piezoelectric-based functionally graded materials (FGM) cylindrical shells under combined loadings is investigated. The equations of motion are obtained by using the principle of Hamilton and Maxwell's equations and the Navier's type solution used to solve these equations. Material propertie...
متن کاملImperfections and Energy Barriers in Shell Buckling
The elastic buckling of shell structures such as spherical shells subject to external pressure and cylindrical shells loaded in axial compression is highly sensitive to imperfections and often catastrophic. Recent studies of spherical shells have provided accurate quantitative results for the relation between the buckling pressure and the amplitude and shape of geometric imperfections and, addi...
متن کاملElasticity theory and shape transitions of viral shells.
Recently, continuum elasticity theory has been applied to explain the shape transition of icosahedral viral capsids--single-protein-thick crystalline shells--from spherical to "buckled" or faceted as their radius increases through a critical value determined by the competition between stretching and bending energies of a closed two-dimensional (2D) elastic network. In the present work we genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 68 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2003